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Memory Management Scheme to Improve Utilization Efficiency
and Provide Fast Contiguous Allocation without a Statically
Reserved Area
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Fast allocation of large blocks of physically contiguous memory plays a crucial role to boost the performance
of multimedia applications in modern memory-constrained portable devices, such as smartphones, tablets,
etc. Existing systems have addressed this issue by provisioning a large statically reserved memory area (SRA)
in which only dedicated applications can allocate pages. However, this in turn degrades the performance of
applications that are prohibited to utilize the SRA due to the reduced available memory pool. To overcome
this drawback while maintaining the benefits of the SRA, we propose a new memory management scheme
that uses a special memory region, called page-cache-preferred area (PCPA), in concert with a quick memory
reclaiming algorithm. The key of the proposed scheme is to enhance the memory utilization efficiency by
enabling to allocate page-cached pages of all applications in the PCPA until predetermined applications
require to allocate big chunks of contiguous memory. At this point, clean page-cached pages in the PCPA
are rapidly evicted without write-back to a secondary storage. Compared to the SRA scheme, experimental
results show that the average launch time of real-world applications and the execution time of I/O-intensive
benchmarks are reduced by 9.2% and 24.7%, respectively.
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1. INTRODUCTION

State-of-the-art high-end portable devices, such as smartphones and tablets, are armed
with high-resolution cameras and display panels to attract customers, for example,
3840 × 2160 in ultra-high-definition (UHD), 1920 × 1080 in high-definition (HD), etc.
Such high-resolution demand has been satisfied by adopting advanced video compres-
sion standards (e.g., high efficiency video coding (HEVC) [Henot et al. 2013]) and more
powerful hardware (e.g., higher CPU clock speed, heterogeneous processor [Wang and
Song 2011], etc.). Along with such technologies to enhance the computing capability
and efficiency, efficient memory management has long been regarded, and even em-
phasized in these days, as a key success factor to meet the demand because the higher
pixel density spurs increase of multimedia content size.
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Fig. 1. Comparison of contiguous free page distribution between (a) just after booting and (b) after execution
of a number of applications: the x- and y-axis represent the start page frame number (PFN) for 2k contiguous
pages and contiguous free page order, that is, k in 2k pages, respectively.

Direct memory access (DMA) modules are commonly used in state-of-the-art systems
to improve the efficiency of data transfers by allowing other hardware subsystems
to access main memory without CPU intervention [Yu et al. 2007; Lee et al. 2011;
Ammendola et al. 2013]. DMA modules, however, can only access physically contigu-
ous memory blocks [Ammendola et al. 2013], so the speed of providing a chunk of
contiguous memory blocks to DMA modules determines the performance of multime-
dia processing. The main challenge to provide physically contiguous memory blocks to
DMA modules is that a physical memory space becomes fragmented into smaller pieces
over time and with use. Figure 1 compares snapshots of memory states right after the
booting (in Figure 1(a)) against after executing some applications (in Figure 1(b)) in a
Galaxy Note 3 smartphone1. As shown in the figures, the dots representing the order of
contiguous free pages tend to move to lower orders in Figure 1(b), which indicates that
the physical memory becomes fragmented as applications keep allocating and free-
ing physical memory over time. When a system suffers such memory fragmentation
[Matias et al. 2011; Udayakumaran et al. 2006], an operating system (OS) is not able
to provide sufficient contiguous memory chunks to DMA modules, which in turn leads
to the delay of the response time of launching and playing multimedia content because
an OS requires to invoke a page reclamation routine to secure sufficient contiguous
memory space to accommodate the requests.

An input-output memory management unit (IOMMU) is used to mitigate the per-
formance degradation caused by the page reclamation [Amit et al. 2011, 2010]. The
IOMMU allows to access physically scattered pages in a similar manner to accessing

1Refer to Section 4 for the specification of the smartphone used in this experiment.
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Fig. 2. A memory layout for (a) SRA and (b) CMA schemes.

contiguous pages with the aid of virtual-to-physical (VA-to-PA) address translation. To
this end, a device driver for IOMMUs needs to manage mapping information required
by VA-to-PA address translation for a physically scattered memory pool assigned to
the IOMMU. Due to the resource and latency overheads caused by the address transla-
tion, using an IOMMU in a system can degrade the performance, which can be further
exacerbated as the amount of memory managed by an IOMMU increases.

A statically reserved area (SRA) is used to complement the drawback of using an
IOMMU. The main idea of the SRA-based physical memory management scheme (here-
inafter, we will refer to it as the SRA scheme) is to reserve a large contiguous physical
memory chunk at boot time which can be used only for dedicated applications that can
be predetermined by designers in design time [Jeong et al. 2013]. The SRA scheme
simply segregates physical memory into two regions, that is, an SRA and a normal re-
gion, as shown in Figure 2(a). Each application that needs to allocate pages in the SRA
should have its own subregion in the SRA region. The SRA scheme is one of the most
widely used solutions for allocating contiguous memory because of its instant access to
the dedicated physical memory space allocated for predetermined applications. How-
ever, it inevitably degrades the memory usage efficiency when we run only applications
that are not configured to use the SRA region, because the SRA scheme leaves the SRA
region idle when applications that utilize the SRA region are not executed [Jeong et al.
2013, 2012]. This hinders the chance to achieve utmost performance improvement that
can be achieved by fully utilizing entire physical memory capacity.

To overcome the SRA scheme’s inefficient memory utilization, the contiguous memory
allocator (CMA) was developed [CMA 2012]. Figure 2(b) shows the memory layout of
the CMA scheme. As in the SRA scheme, in the CMA-based scheme, there is a special
region (CMA region) and a normal region of memory. Compared to the SRA scheme,
the key change in the CMA-based scheme is that any application can write into the
CMA region. When applications that are configured to utilize the CMA region demand
the CMA region, it is cleared by reclaiming pages (if they are dirty, write-back to the
secondary storage is necessary) and moving anonymous pages, if any, into the normal
region. The advantage of this system is that it gives all applications access to the full
memory space. The drawback is that clearing the CMA region can take some time, and
therefore the CMA region’s targeted application experiences long delay [Jeong et al.
2012; CMA 2012].

In order to further improve the memory utilization efficiency while maintaining the
benefit obtained by the SRA scheme, we propose a novel physical memory manage-
ment scheme that utilizes a special memory region, named page-cache-preferred area
(PCPA) region (hereinafter, we will refer to it as the PCPA scheme). The PCPA region
is the simple replacement of the SRA region. Compared to the SRA region, the PCPA
region is allowed to allocate page-cached pages of all running applications when it is
not used by a set of predetermined applications that need to secure big chunks of con-
tiguous anonymous pages (i.e., ones utilizing the SRA region in the SRA scheme). This
enables the proposed PCPA scheme to reduce the execution time of memory- and IO-
intensive workloads that use abundance of page-cached pages by facilitating additional
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physical memory space to allocate more page-cached pages without memory reclama-
tion. Furthermore, page-cached pages are backed by files and normally clean, so they
can be reclaimed very quickly compared to dirty page-cached and anonymous pages,
as they do not require any write-back to secondary devices [Love 2010, 2004; Jeong
et al. 2012]. By benefiting from the hallmark of clean page-cached pages, we can also
preserve the benefit of the SRA scheme, that is, provision of big chunks of memory, by
quickly reclaiming the PCPA at the moment when predetermined applications require
to use it by simply returning clean page-cached pages in the PCPA to the freed page
lists managed by the Linux kernel.

The remainder of this article is organized as follows. Section 2 reviews the memory
allocation scheme in a state-of-the-art Android-based system. Section 3 elaborates the
proposed PCPA solution. Section 4 shows the experimental results. Section 5 reviews
the related work, followed by conclusions in Section 6.

2. CONTIGUOUS MEMORY ALLOCATION IN ANDROID SYSTEMS

This section reviews a state-of-the-art solution to efficiently allocate contiguous mem-
ory space for running applications using an IOMMU in Android-based mobile devices
(in Section 2.1) along with the latency analysis to secure memory space required to
launch applications and VA-to-PA address translation (in Section 2.2). Then, we ex-
plain the SRA scheme in Android systems (in Section 2.3).

2.1. Contiguous Page Allocation Using an IOMMU in Android Systems

Figure 3 overviews a memory allocation scheme in state-of-the-art Android-based mo-
bile devices (hereinafter, Android system) using an IOMMU and ion buffer. An IOMMU
handles the virtual-to-physical (VA-to-PA) translation and an ion buffer is an ensem-
ble of physically scattered memory pages connected with a big, singly linked list. An
IOMMU is largely composed of a translation lookaside buffer (TLB) and a prefetch
buffer. The TLB is a hardware cache that can reduce the VA-to-PA translation latency
by eliminating the latency taken by accessing page tables in a main memory for the
address translation when corresponding entries reside in the TLB. The prefetch buffer
holds preloaded VA-to-PA translation information for consecutive virtual addresses so
that physically scattered pages can be successively accessed without additional main
memory access, as long as they are virtually consecutive [Amit et al. 2010].

The memory granularity managed by an IOMMU is the size of page block. The page
table entry consists of a tuple of virtual address, that is, V (·), corresponding physical
memory address, that is, P[V (·)], and the page block size. For instance, in Figure 3,
with a single 1MB-sized page table entry for V (1) → P[V (1)], the virtual address space
ranging V (1) ∼ V (1) + 28 × 4KB is mapped to the contiguous physical address space
ranging P[V (1)] ∼ P[V (1)+28×4KB]. Like the modern ARM architecture [ARM 2014],
there are four supported page block sizes: 16MB (212 pages), 1MB (28 pages), 64KB (24

pages), and 4KB (1 page). In general, the page table entry for a 16MB-sized page block
is not used because it is practically difficult to allocate consecutive 212-sized pages at a
time, as shown in Figure 1(b).

The units of consecutive page blocks managed by a Linux kernel should be commen-
surate with those in an IOMMU, that is, 28-, 24-, and 20-sized page blocks, to seamlessly
support the IOMMU. The contiguous physical memory allocation in the Linux kernel is
governed by a buddy algorithm that is devised to mitigate the external fragmentation
issue. It uses a Linux kernel function alloc pages(n) which allocates contiguous 2n-sized
physical pages, where, n is an integer value, typically ranging 0∼10 [Love 2010]. Using
the alloc pages(n) function, all the required physical pages for an IOMMU are allocated
in the heap. In Android systems, for easy maintenance, an IOMMU connects all the
scattered physical pages in ion buffer that consists of three, small linked lists, each
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Fig. 3. Overview of the memory allocation scheme with the aid of IOMMU and ion buffer in state-of-the-art
Android systems.

of which contains a number of identically sized nodes of 28-, 24-, and 20-sized page
blocks, respectively. The first small linked list, whose node size is 28 pages, ranges
from P[V (1)] to P[V (i) + 28 × 4KB]; the second list whose node size is 24 pages is from
P[V (i+1)] to P[V (i+ j)+24 ×4KB]; the last list is from P[V (i+ j +1)] to P[V (i+ j +k)]
with one page-sized node where i, j, and k represent the number of nodes in each small
linked list, respectively. Each node corresponds to a block of contiguous pages allocated
by alloc pages(n). Thus the number of alloc pages(n) calls is equal to the number of
links (connections by next pointer) in each small linked list.

When a device2 has 2total pages in its ion buffer, we can express the size as:

2total = i × 28 + j × 24 + k. (1)

Based on this, we can derive the total number of alloc pages(n) calls to construct the
ion buffer as follows [Amit et al. 2010; LWNnet 2012]:

Nalloc = i + j + k. (2)

2Note that multiple devices can share an IOMMU. In Figure 3, hardware devices, ranging from device 1 to
device X, can use the IOMMU after each device’s ion buffer is registered to the IOMMU. For simplicity, only
device 1’s ion buffer is presented in Figure 3 among multiple IOMMU users.
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Table I. Average Execution Time for Allocating 28-, 24-, and 20-Sized Page Blocks

Page block size 4 KB (20 pages) 64 KB (24 pages) 1 MB (28 pages)
normal alloc 3.4μs 35.4μs 383.7μs
slow path alloc NA 4.6ms 103ms

Note: Test results are based on a Galaxy Note 3.

2.2. Memory Allocation Overhead under Memory Fragmentation

The memory fragmentation affects the performance of running applications when they
are launched as well as executed. The launch time is seriously degraded, especially
when an application needs a big chunk of contiguous memory (larger than a few MB)
as it results in the increase of the number of page allocation calls, as presented in
Eq. (2). On the other hand, the performance degradation during the execution is mostly
affected by address translation overhead caused by increased TLB misses due to the
increase of the number of page table entries. In this section, we first analyze the impact
of the increased page allocation calls (in Section 2.2.1), and then explain the impact of
the increased TLB miss rate (in Section 2.2.2).

2.2.1. Increase of Allocation Time. There are two kinds of allocation patterns in al-
loc pages(n) function, that is, normal alloc and slow path alloc. The normal alloc is
invoked when the Linux kernel has a sufficient freed page-list to allocate a requested-
sized page block, while the slow path alloc is invoked when the Linux kernel does
not have sufficiently large contiguous physical pages in its freed page-lists. In case of
slow path alloc, it takes longer than the other because the Linux kernel needs to secure
enough freed pages to accommodate the size of the requested page block by reclaiming
page-cached pages and/or page migrations. Note that a 20-sized page is not the case for
slow path alloc as we always have at least more than one 20-sized pages. Table I shows
the average execution time for allocating 28-,24-, and 20-sized page blocks in the two
allocation patterns, which is measured on a state-of-the-art smartphone. In case of nor-
mal alloc, the average execution time increases as the page block size increases. Note
that the execution time for finding a 28-,24-, and 20-sized page block is same because
the procedure of finding a page block in each freed page-list is identical apart from the
size [Love 2010]. However, after being detached from the freed page-lists, the found
page block needs to pass through a check-up routine identifying that all the pages in
it are adequate, without any influence on the Linux kernel.

During the establishment of ion buffer, the Linux kernel first tries to find 28-sized
page blocks in the freed page-lists, as many as possible. Then, if there are no more
28-sized page blocks left, 24-sized page blocks in the freed page-lists are searched. Note
that, for the case of securing a 28-sized page block in ion buffer, slow path alloc is not
executed because it takes too long as shown in Table I. Different from the case of 28-,
if there are no more 24-sized page blocks in the freed page-lists, the slow path alloc
is executed. After the slow path alloc execution, if no more 24 page blocks are found,
20-sized pages are added to the ion buffer.

Here we provide an example of how such a memory allocation scheme affects memory
allocation time when we establish a 100MB ion buffer. With the values in Table I, if
a 100MB ion buffer can be established with only 28-sized page blocks, it takes only
38.37ms(=383.7μs ×100) while the times are increased to 56.45ms and 87.04ms when
only 24- and 20-sized page blocks are used, respectively, which are situations when
memory fragmentation becomes severe. Needles to say, the time when slow path alloc
is executed increases exponentially. We can also find out that the system has small
values of i and j when a system suffers memory fragmentation, thereby resulting in
spending a lot of time for establishing ion buffer due to the increased Nalloc. Due to this
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Fig. 4. ION interface in an Android system.

page allocation overhead in using an IOMMU, the responsiveness of an application can
be deteriorated.

2.2.2. Increase of TLB Miss Ratio. The number of page table entries of an IOMMU in
the main memory is equal to Nalloc in Eq. (2). The sizes of TLB and prefetch buffer are
limited. Thus, if Nalloc is large, many page mapping lists compete to acquire entries in
the TLB and the prefetch buffer. In such a case, the TLB miss rate and the number
of copying page table entries from the main memory to the prefetch buffer increase,
which leads to the increase of the VA-to-PA translation time that affects performance
drop when using an IOMMU. Depending on system environment, the time spent for a
TLB miss and a prefetch buffer refill can be up to a few tens of microseconds, so if an
application uses an IOMMU with large Nalloc, it can experience a great deal of replace-
ment overhead. Due to this overhead, the performance of running the application can
be degraded.

2.3. SRA Scheme in Android Systems

As explained in Section 2.2, the increased Nalloc delays the launching and execution
time of applications when using an IOMMU. To reduce the latency, Android system
developers pre-allocate a physically contiguous memory space, that is, SRA, then access
the memory space with an ION interface that enables to access SRA as well as heap
regions with low latency according to an allocation parameter, that is, reserved or
normal, as shown in Figure 4 [LWNnet 2012; Linaro 2013]. In general, when we use an
ION interface, requests of several megabytes from a dedicated application are allocated
to the SRA while requests of several pages are mapped to the heap.

To further clarify usage of the ION interface, we take an example of a camera applica-
tion. In Figure 4, Camera Service interacts with a device driver that implements func-
tions required to operate a camera hardware [Google 2014c], a Binder [Google 2014b]
that is a mechanism of inter-process communication (IPC), and a Surface Flinger that is
a system server performing rendering and image synthesis to the frame buffer [Google
2014d]. Camera Service and Surface Flinger request contiguous pages required to run
a camera application in a user memory space through the ION interface, followed by
passing parameters to an ION driver in the Linux kernel. According to the allocation
parameters, either the SRA or the heap is selected. Camera Service sets the allocation
parameter to reserved while Surface Flinger and Binder set the parameter to normal.
Based on this, large-sized buffers required for Camera Service can be allocated in the
SRA while relatively small-sized pages requested by Surface Flinger and Binder can
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Fig. 5. Memory layout with an example of allocated pages in the PCPA scheme: (a) usual case in the PCPA
scheme and (b) clearing the PCPA when an SRA-dependent application needs a contiguous memory block.

be allocated in the heap with a unified ION interface. For this reason, the camera
application in an Android system can provide fast launch time.

However, the SRA is only dedicated to some applications, that is, a camera application
in this context of the explanation. It is prohibited to be used by any other applications
even when the camera application is not activated. Thus, the memory is not efficiently
utilized in the SRA scheme, which can affect the performance of non-camera applica-
tions in a negative way.

To overcome the inefficiency while maintaining the benefit of the SRA scheme, we
propose a novel contiguous memory allocation scheme, called the page-cached-preferred
region (PCPA) scheme. The following section explains the proposed scheme in detail.

3. PAGE-CACHE-PREFERRED-AREA-BASED PHYSICAL MEMORY MANAGEMENT

In this section, we show the memory layout of our target system. We then technically
treat the proposed scheme, followed by PCPA sizing.

3.1. Target System Definition

Figure 5 shows a physical memory layout of the proposed PCPA scheme. The physical
memory space is largely divided into two regions: a PCPA region and a normal region.
The PCPA region is a memory region where we allocate only page-cached pages of
applications, except for some specified ones that previously use an SRA region in the
SRA scheme. In such exceptional applications, we allocate both anonymous and page-
cached pages as in the SRA scheme. There are two buddy systems, each of which
handles one of the memory regions. We denote sets of pages in the PCPA and the
normal regions by P pcpa and Pnor, respectively. The relationship of the two sets of
pages can be expressed as follows:

(1) N is the total number of pages in the system
(2) P pcpa = {p1, p2, p3, . . . pA}, where A3 is the number of pages in the PCPA
(3) Pnor = {pA+1, pA+2, pA+3, . . . pN}, where N − A pages in the normal region
(4) Pnor ∪ P pcpa corresponds to the total pages in the system

According to page types that are allocated in the PCPA, the state of the PCPA is set
to either ANON ALLOC or PCACHE ONLY: only page-cached pages are allowed to be
allocated in the PCPA when the state is set to PCACHE ONLY while all the page types
can be allocated in ANON ALLOC. Based on the usage of the PCPA region, we classify
applications largely into two sets: SRA-dependent and non-SRA-dependent types. A
set of SRA-dependent applications is a type of application requiring the SRA in the
original SRA scheme, for example, camera; otherwise, non-SRA-dependent.

3There is an optimal PCPA size to maximize the effectiveness of the proposed PCPA scheme. We will address
this issue in Section 3.3.
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ALGORITHM 1: Pseudocode for page allocation

Input: order (Contiguous memory order, 2order sized contiguous pages)
Data: appcur (Current application executing NORMAL alloc function)

AP PSRA (A set of SRA-dependent applications)
ordermin (Minimum memory order in the PCPA)
statepcpa ∈ {ANON ALLOC, PC AC HE ONLY } (PCPA state, initially set to
PCACHE ONLY)

Output: pg (Allocated page address)

1: Function alloc pages(order, type) /* modified version of alloc pages */
2: if type = page cached page then
3: pg ← allocate 20 pages in the PCPA /* request for page-cached page */
4: if pg = NULL then
5: pg ← allocate 20 pages in the normal region
6: end if
7: else
8: pg ← NORMAL alloc(order) /* request for anonymous pages */
9: if pg = NULL then
10: pg ← NORMAL alloc(order)
11: if pg = NULL then
12: pg ← slow path alloc() /* follow the path in the original Linux kernel */
13: end if
14: end if
15: end ifreturn pg

16: Function NORMAL alloc(order)
17: pg ← allocate 2order pages in the normal region /* try in the normal region first */
18: if pg = NULL and order ≥ ordermin and appcur ∈ AP PSRA then
19: if statepcpa = PCACHE ONLY then
20: Quick Reclaim(P pcpa) /* clearing the PCPA in Algorithm 2*/
21: else if statepcpa = ANON ALLOC then
22: pg ← allocate 2order pages in the PCPA
23: ANON ALLOC flag ← TRUE
24: end if
25: end ifreturn pg

3.2. The Proposed Scheme

The main idea of the proposed scheme is to differentiate the usage of the PCPA ac-
cording to the application type. For SRA-dependent applications, we allocate both the
anonymous and the page-cached pages while we only allow to allocate page-cached
pages of non-SRA-dependent applications in the PCPA region. As we allocate simply
page-cached pages for non-SRA-dependent applications in the PCPA, we can quickly
allocate contiguous anonymous pages for an SRA-dependent application by simply
discarding reclaimable page-cached pages in the PCPA, as presented in Figure 5(b).

The proposed PCPA scheme is composed of three components: (1) page allocator,
(2) quick memory-reclaimer, and (3) PCPA timer. They are described in Algorithm 1,
Algorithm 2, and Algorithm 3, respectively. In Algorithm 1, allocation of pages in the
PCPA and the normal regions is described. Algorithm 2 represents how the page-cached
pages in the PCPA region are reclaimed as quickly as possible. Algorithm 3 shows how
the best moment to change the state of PCPA is decided.

3.2.1. Page Allocation. Algorithm 1 shows how we allocate contiguous pages in the
proposed PCPA scheme. To reuse the most part of memory allocation framework in
Android, we augmented the alloc pages function explained in Section 2.1. Accordingly,
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we can allocate pages accounting for the application type, that is, SRA-dependent
versus non-SRA-dependent, and memory request type, that is, anonymous and page-
cached pages (lines 1∼16). First, we check the memory request type (in line 2). If the
memory request type is page-cached pages (line 2), we allocate page-cached pages,
first in the PCPA region then in the normal region if it is not available in the PCPA
(lines 3∼6). In the Linux kernel, page-cached pages are usually file-backed and handled
as the unit of 20-sized page. When the memory request type is anonymous pages, we
allocate the pages using NORMAL alloc functions (lines 8∼15).

In the NORMAL alloc function (lines 17∼27), we first try to allocate 2order-sized
pages in the normal region (line 18). If the memory space in the normal region is
insufficient (i.e., pg=NULL), we first check whether the requested application is in a
set of SRA-dependent applications (i.e., appcur ∈ AP PSRA). If so, we also check whether
the requested memory order is larger than a minimum contiguous memory order of the
PCPA (i.e., order ≥ ordermin) where ordermin is a system-specific parameter defined as
the smallest size of nodes in ion buffer except for 20-sized pages, that is, 4 in our target
system. It is checked in order to minimize the memory fragmentation in the PCPA. If
all the conditions are met and the state of the PCPA is in PCACHE ONLY, we clear
the PCPA region by calling the Quick Reclaim function in Algorithm 2 to secure more
memory space in the PCPA (lines 20∼21).

When the state of the PCPA region is in ANON ALLOC, we allocate 2order-sized pages
in the PCPA region and set the ANON ALLOC flag to TRUE. The ANON ALLOC flag
is used to determine how long the statepcpa is kept in ANON ALLOC and explained in
Algorithm 3. As we simply clear the PCPA region when an SRA-dependent application
needs to allocate anonymous pages in the PCPA that was previously used to host only
page-cached pages for non-SRA-dependent applications, that is, PCACHE ONLY, we
should call the NORMAL alloc function twice (lines 8 and 10). The first call is for the
trial to allocate anonymous pages in the normal region (line 8). If we have sufficient
contiguous memory space in the normal region, we allocate anonymous pages in this
region. Otherwise, we simply clear the PCPA region by calling the Quick Reclaim
function to secure contiguous memory space in the PCPA region and change the state
of the PCPA to ANON ALLOC. Then, we actually allocate anonymous pages in the
PCPA at the second call (line 10). When we cannot find any memory space to handle the
request even after clearing the PCPA region, we then invoke slow path alloc (explained
in Section 2.2) to make more memory space by reclaiming pages in the normal region
(line 12).

3.2.2. Quick Memory-Reclaiming. Algorithm 2 shows the proposed quick reclaiming solu-
tion with the two scanning threads. As finding reclaimable pages requires scanning all
the pages in the PCPA, it takes longer time as the size of the PCPA is configured to be
larger. To help improve reclaiming speed, we propose a solution utilizing two indepen-
dent scanning threads. One thread checks from lower addresses moving upward while
the other scans from higher addresses downward. When Quick Reclaim is called, we
initialize some parameters (lines 2∼7). States of all pages in the PCPA are initially set
to NULL (line 7), and then updated to CHECKED as a corresponding page is scanned
(lines 16∼26).

The scanned pages are examined to identify whether reclaimable or non-reclaimable.
A reclaimable page indicates one that is not shared by any other processes and not a
dirty page, that is, no need to write-back; otherwise, non-reclaimable. The first scanning
thread finding reclaimable pages by moving downward is invoked by sending a wake-
up signal (line 8). Then, the second scanning thread moving upward is started (line 9).
The two scanning threads independently search reclaimable pages in the PCPA and
store them in S until one of them reaches a page that has already been checked by
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ALGORITHM 2: Pseudocode for quick memory-reclaiming
Input: P pcpa = {p1, p2, p3, . . . pA}
Data: S (set of reclaimable pages), pi (state) (The status of ith page in P pcpa)
Require: Create RT Thread Quick Reclaim thread before the first run of Quick Reclaim

1: Function Quick Reclaim(P pcpa)
2: S ← φ
3: FINISH FLAG ← FALSE
4: statepcpa← ANON ALLOC
5: ANON ALLOC flag ← FALSE
6: set PCPA timer /* start the timer */
7: ∀i, pi (state) ← NULL
8: wake up process(RT Thread Quick Reclaim) /* send a wake-up signal */
9: Reclaimable Page Check(1, A) /* check from lower addresses moving upward */
10: Wait until FINISH FLAG is changed to TRUE.
11: free pages (∀ pg ∈ S) /* return the reclaimed pages to the freed page-lists */

12: Function RT Thread Quick Reclaim(P pcpa)
13: Sleep and wait for wake up signal
14: Reclaimable Page Check(A, 1) /* scan from higher addresses downward */
15: FINISH FLAG ← TRUE

16: Function Reclaimable Page Check(From, To) /* find the reclaimable pages */
17: for i ← From to To do
18: if pi (state) = CHECKED then
19: break
20: else
21: pi (state) ← CHECKED
22: if Pi is reclaimable then
23: pi (state) ← CHECKED, S ← S ∪ Pi
24: end if
25: end if
26: end for

the other (lines 18∼19). Once the condition is met, we set FINISH FLAG to TRUE to
indicate the completion of the scanning (line 10), and then free the pages in S (line 11).

3.2.3. PCPA timer. To further maximize the utilization of the PCPA for non-SRA-
dependent applications, we develop a solution to control the state of the PCPA region.
After an SRA-dependent application has secured several large contiguous page
blocks and makes no further memory allocation request, the state of the PCPA can
return back to be PCACHE ONLY from ANON ALLOC and remains in this state
unless an SRA-dependent application is restarted. The earlier the state goes back to
PCACHE ONLY, the more we can possibly utilize the PCPA to allocate page-cached
pages for non-SRA-dependent applications. Thus, we need to develop a mechanism to
figure out the earliest possible moment for such a state transition.

To achieve this goal, we use a timer and its callback function as shown in Algorithm 3.
We set PCPA timer with a timeout value (Ttimeout) and ANON ALLOC flag to FALSE
when Quick Reclaim is called (lines 4∼6 in Algorithm 2). While the PCPA timer is tick-
ing, we check whether there is a request for large contiguous pages (2order-sized pages,
where order ≥ 4). If so, we set the ANON ALLOC flag to TRUE (line 24 in Algorithm 1);
otherwise, the ANON ALLOC flag remains FALSE. When the PCPA timer is expired
and ANON ALLOC flag is TRUE, it means that there was a large contiguous memory
allocation request during the previous Ttimeout interval. Thus, we maintain the state
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ALGORITHM 3: Pseudocode for PCPA timer
1: Function PCPA timer callback()
2: if ANON ALLOC flag = TRUE then
3: ANON ALLOC flag ← FALSE
4: set PCPA timer
5: else
6: statepcpa←CACHE ONLY
7: end if

of the PCPA with ANON ALLOC as it has higher probability that large contiguous
memory requests will occur in the next time interval (line 4 in Algorithm 3).

When the PCPA timer goes off with the ANON ALLOC flag being FALSE, the state
of the PCPA region is set back to PCACHE ONLY. In addition, when SRA-dependent
applications are finished, all the anonymous pages used by the SRA-dependent ap-
plications in the PCPA region are automatically freed because they are not required
any more, as they are the heap memory of the applications. Consequently, the state
of the PCPA returns to PCACHE ONLY and the freed region can be used to allocate
page-cached pages of non-SRA-dependent applications.

We should carefully determine Ttimeout as it strongly affects the effectiveness of the
PCPA scheme. A too-large value will delay the state transition from ANON ALLOC
to PCACHE ONLY, thereby losing a chance to allocate more page-cached pages in the
PCPA. On the contrary, a too-small value can result in the case where the state of
the PCPA returns to PCACHE ONLY too early before all the necessary allocations of
sufficient contiguous page blocks are done. Through extensive experiments, we have
found that Ttimeout = 0.5 (sec) is most appropriate in our target system.

3.3. Sizing the PCPA

In the proposed PCPA scheme, the size of the PCPA strongly affects performance
of SRA-dependent applications, especially when they are required to secure a large
memory block at start-up. When the size of the PCPA is configured to a small value,
the launch time is high as the probability to secure contiguous memory space with and
without Quick Reclaim is low, thereby requiring to invoke slow path alloc (explained
in Section 2.2.1). As explained in Algorithm 1, we first try to allocate anonymous pages
in the non-SRA-dependent region. As it can be highly fragmented because we allow
to allocate even 20-sized pages in this region, the probability that we cannot find the
required contiguous memory in the normal region is high. Then, we need to perform
Quick Reclaim as an attempt to allocate the requested anonymous pages in the PCPA.
However, despite Quick Reclaim, the probability of finding the contiguous memory in
the PCPA is still low as the PCPA size is small. Consequently, we end up running a
slow reclaiming process, that is, slow path alloc in line 12 of Algorithm 1.

On the contrary, if the size of the PCPA is large, the probability of securing large
memory chunks in the PCPA after Quick Reclaim is high. Thus, we can manage to
allocate a large contiguous memory request with low overhead. At the same time,
however, it takes longer time to clear the PCPA with Quick Reclaim as the amount of
the memory space that requires to be scanned is increased. Furthermore, the launch
time of SRA-dependent applications can be further degraded as Quick Reclaim is called
more frequently, since the probability of failure to allocate anonymous pages in normal
region is increased as the size of normal region is smaller. The preceding explanation
can be formally represented as follows. First, let us define the existence probability of
freed 2n-sized pages in a certain region “R” as Prob(2n, R). With this definition, we can
derive the following.
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Fig. 6. Snapshot of processing Quick Reclaim when PCPA size = 260MB and PCPA size > 260MB.

(1) In Figure 6, Prob(2n, A), Prob(2n, B), Prob(2n, D) and Prob(2n, E) are identical, where n is 4
or 8.

(2) As described in Figure 1(b), Prob(28, C) ≈ Prob(28, F) ≈ 0.
(3) Assuming that C and F are fragmented, Prob(24, C) > Prob(24, F) because C > F.
(4) Prob(28, A+ B+ C) + Prob(24, A+ B+ C) > Prob(28, D + E + F) + Prob(24, D + E + F).

Note that the performance of non-SRA-dependent applications is independent of
the size of the PCPA because the only difference for such applications is the location of
page-cached pages while the amounts of memory space for anonymous and page-cached
pages are identical, even though the size of the PCPA is varied.

Thus, in order to maximize the effectiveness of the proposed PCPA scheme, we need
to find the optimal PCPA size in the design time. Note that the optimal point can be
varied according to target systems. As explained in Section 2.2, Nalloc is obtained after
establishing ion buffer of an SRA-dependent application. We should consider Nalloc and
execution time of Quick Reclaim simultaneously to find the optimal PCPA size. Since
such a trade-off analysis is a complex problem, we depend on an engineering approach.
In our experiments, we chose 260MB as the optimal PCPA size, and details of the
analysis will be described in Section 4.4.

4. EXPERIMENTS

In this section, we explain the experiments for evaluating the performance improved
by the proposed scheme. We first describe our experimental setup. We then show and
analyze the results of benchmark tests and real-life Android application tests. Finally,
we present the trade-off and overhead analysis of our approach.

4.1. Experimental Setup

We performed experiments on a Galaxy Note 3 smartphone with octa-core Exynos 5420
that consists of four ARM Cortex-A15 and four ARM Cortex-A7 cores. The Galaxy
Note 3 also has an AMOLED 1920x1080 display, a 13-megapixel camera, 3GB of RAM,
and 32GB-sized eMMC flash device. We used Android 4.3 with Linux kernel 3.4.39.
In the original target system, various applications are configured to use statically
reserved area (SRA), such as camera, WiFi Direct, Codec, etc. Among them, the camera
application is dominant in terms of allocated SRA size. The size of SRA for the camera
application amounts to 260MB, which corresponds to 88.7% of the total size of the
SRA. Therefore, to ease the experiments without losing any accuracy of the results, we
simply considered the subregion of the camera as the entire SRA while ignoring the
others.

4.2. Benchmark Test

As a metric for evaluating performance improvement, we used the average execu-
tion time of benchmarks. We measured it under the SRA scheme and our proposed
scheme. To demonstrate the effectiveness of increased available memory space, we
chose memory- and IO-intensive benchmarks instead of CPU-intensive ones. To see
whether the abundance of page-cached pages had an effect on execution times of
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Table II. Memory Allocation Test Using Sysbench

Test block size 128KB 100MB
Scheme SRA PCPA SRA PCPA

Free Mem. (MB): before 54.4 320.4 54.3 318.1
Free Mem. (MB): after 53.9 320.2 134.1 318.0
Page-cached Mem. (MB): before 713.2 714.6 711.4 712.9
Page-cached Mem. (MB): after 713.2 714.6 641.5 712.9

Execution time 135.9ms 136.4ms 801μs 730μs

benchmarks, we checked the amount of page-cached pages after each test. In these
experiments, we used multiple benchmark suites: Sysbench [Sysbench 2014] and IO-
zone[IOzone 2006]4.

To reflect a reproducible memory-constrained environment, we configured the test
conditions as follows.

(1) We disabled low-memory killer (LMK) [Kalkov et al. 2012] that kills background
tasks to get available pages when the Android system detects memory shortage.
This is because the time consumed by LMK operation can affect the performance
of the system and newly obtained free pages with LMK can change the execution
time of each test.

(2) Before each start of test, we imposed 1GB random memory allocation to our exper-
imental target right after system booting in order to generate memory-constrained
status.

(3) We powered-off the target after one test finished and powered-on again for the next
test.

4.2.1. Memory-Intensive Cases. We used the memory test mode in Sysbench to validate
the effectiveness of the proposed PCPA scheme in memory-intensive cases. Table II
shows the average execution time of running the memory test mode by setting the
block size for each access to 128KB and 100MB, the number of threads to 32, and the
total access size to 3GB. In the table, before and after indicate the memory state before
and after executing Sysbench, respectively. In the case of 128KB, there is almost no
memory status change between before and after in both schemes, so there is almost
no difference in execution time, that is, 135.9 versus 136.4ms. However, for the case
of 100MB, the SRA scheme has just 54.3MB of free memory before the execution, so
the remaining required pages are secured by reclaiming mostly page-cached pages
(711.4MB → 641.5MB). On the contrary, the PCPA scheme does not need memory-
reclaiming because the free memory space is enough for a 100MB-sized allocation
request (318.1MB). Consequently, there is around 9% of performance improvement in
terms of the execution time in the memory-intensive test.

4.2.2. IO-Intensive Cases. To validate the effectiveness of the proposed PCPA solution
in an IO-intensive scenario, we used two benchmarks: fileio test mode of Sysbench and
IOzone [IOzone 2006]. In each benchmark suite, there are several types of benchmark
tests. For the case of Sysbench, all the types of tests are done individually, thus each
test has no influence on others. Contrary to Sysbench, all the types of benchmark tests
of IOzone are executed sequentially, thus each test is correlated to the previous test.

Figure 7 shows the results of the fileio test mode of Sysbench when we set the block
size as 128KB and 4KB. We configured the prefetch size to 256KB. Each test created

4We also used memory-intensive benchmarks (bzip2, mcf, etc.) in the SPEC CPU2006 benchmark suite
[SPECCPU2006 2014] in our evaluation. However, they use memory spaces in an iterative way and not in a
bulky manner. Thus we did not show the results in this article.
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Fig. 7. File I/O test using Sysbench: (a) average execution time of Sysbench and (b) average size of page-
cached pages after each test.

16 files. The fileio test mode in Sysbench is composed of three types of benchmark tests,
that is, sequential read (i.e., seqrd), random read (i.e., rndrd), and sequential write
(i.e., seqwr). In Figure 7(a), the x- and y-axis represent the test type and the average
execution time, respectively.

In the sequential write test, the execution time was reduced by 42% and 46%
compared to the SRA scheme when the block size was 128KB and 4KB, respectively.
While sequential write is running, page-cached pages are used for the buffer to keep
the write data before actual flash write I/Os happen. Thus, the more memory space
for page-cached pages is provided, the less flash write I/O happens. If there is no more
memory space for page-cached pages, some pages should be reclaimed, and the dirty
pages which are reclaimed need write-back to the flash. As shown in Figure 7(b), the
amount of page-cached pages under the PCPA scheme was increased by 35% and 13%
when the block size was 128KB and 4KB, respectively. In sequential write test, the
PCPA scheme benefited from the increased page-cached pages. In the random read
test, the execution time was reduced by 42% and 8% compared to the SRA scheme
when the block size was 128KB and 4KB, respectively. As the size of page-cached
pages in the PCPA scheme was increased by 23% and 28%, more data were cached in
the PCPA region. Thus many file reads were hit in the page-cached pages.

On the other hand, the sequential read test resulted in almost the same execution
time. This can be explained as follows. The file I/O transaction is interfaced with three
SW layers, consisting of a user layer, a file system layer, and a block I/O layer. For
read operation, a user-layer function (by the system call from Sysbench) seeks for page-
cached pages in the file system layer. If page-cached pages have the right data for that
system call, that is, hit case, the data are returned immediately. However, in the case
of a miss, the block I/O layer checks whether the request type is sequential or random
[Fengguang et al. 2008], and then the eMMC is accessed using the IO scheduler [Love
2004]. Once the request type for read operation turns out to be sequential access in the
block I/O layer, a read ahead operation is activated, and then more data than requested
are read from the eMMC to the memory space for page-cached pages. Thus, the first
128KB-sized read access created miss state, but from the second access, hit state was
recorded. This is because an additional 128KB was already read from the eMMC to
page-cached pages during the prefetch of the first access [Fengguang et al. 2008]. Even
if the system is little short of free memory space to create page-cached pages, during
the previous access, through reclaiming memory, the required amount of page-cached
pages is provided. Therefore the time spent for memory-reclaiming can be hidden.

Figure 8 shows the test results of the IOzone benchmark when we configured the
block size of each file I/O transaction to 128KB (Figure 8(a)) and 4KB (Figure 8(b)),
respectively. In this test, we ran IOzone 10 times and averaged the test results. The x-
and y-axis represent the test sequence and the normalized execution time, respectively.
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Fig. 8. Normalized execution time of IOzone: (a) block size = 128KB and (b) block size = 4KB.

Table III. Average Size of Page-Cached Pages
after IOzone

File I/O Transaction Size SRA PCPA
4KB 126.9MB 245.9MB
128KB 124.1MB 382.1MB

The IOzone benchmark makes a single file and it is used in each test step represented in
the x-axis. As we set the total transaction size as 512MB, the same single 512MB-sized
file was used in each test.

As depicted in the figure, the average improvement of the IOzone benchmark was
24.7% and Table III shows the average amount of page-cached pages after the IOzone
test in each scheme. In the case of write, the execution time of our scheme was reduced
by 40% compared to the SRA scheme in both cases of transaction block sizes. We used
the same condition with the memory test mode in Sysbench, so the amount of free pages
at the initial stage of each test was the same as that of Table II. Our proposed scheme
had more free pages, approximately 260MB, than the SRA scheme and these free pages
were used as the buffer before actual write to the eMMC. However, as the SRA scheme
had less free pages than our scheme, it should reclaim page-cached pages to make new
free pages for the write buffer. Due to the page reclamation, the SRA scheme spent
more execution time in write. During the first write test, most free pages were used for
page-cached pages. As described in Table III, our scheme can hold more page-cached
pages through the PCPA region than the SRA scheme. As a result, in rewrite test, our
scheme experienced more write-hit cases than the SRA scheme. However, as the SRA
scheme held fewer page-cached pages, it triggered page reclamation for the rewrite and
flash write I/Os for the reclaimed pages. Thus the execution time was increased by 38%
and 48% in each case of block size. As for the case of rewrite, in the three consecutive
read tests, more read-requested pages were found in the memory with the aid of the
PCPA region. Thus the execution times of three read tests were reduced by 8%∼13%
compared to the SRA scheme.

4.3. Real-Life Android Applications

To quantitatively validate the effectiveness of increased page-cached pages through the
PCPA region in real-life Android applications, we evaluated the performance of non-
SRA- and SRA-dependent applications. We chose the launch time of these applications
as our performance metric. The application launch time is an important performance
metric, especially for Android system users, since they dynamically switch a foreground
application from time to time. However, it is not straightforward to measure an accurate
application launch time. We therefore measured the timing information of applications
through the Activity Manager [Google 2014a] module in the Android framework. The
key of the proposed PCPA scheme is to maximize the utilization of the PCPA so as
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to improve the launch time of non-SRA-dependent applications while maintaining the
launch time of SRA-dependent applications.

To reflect the memory status shown in Figure 1(b), different from the random mem-
ory allocation used in Section 4.2, we used the monkeyrunner tool [Google 2014e] to
generate memory-constrained status of real-life Android systems. This tool can im-
pose randomly generated user inputs as general smartphone users touch the screen to
operate applications.

4.3.1. Non-SRA-Dependent Applications. We selected and ran the most widely used non-
SRA-dependent applications in Android systems: gallery, youtube, calendar, settings,
video, music, google search, myfiles, and voicenote. To reflect the realistic memory
status of Android systems, we first ran the monkeyrunner tool to generate random
events created when Android applications are starting and running. We then randomly
launched the aforementioned non-SRA-dependent applications multiple times while
the tool was running. We recorded all the events of the target system in a log file.
We extracted the launch time of the target applications from the log file and averaged
them. In this test, we also disabled low-memory killer (LMK) [Kalkov et al. 2012] as in
Section 4.2 to remove the influence on the launch time by newly obtained free pages.

To see the effect of the page-cached pages on the application launch time, we exam-
ined the size of available page-cached pages. We also measured the amount of flash
read and write I/O, since it is directly related to the size of page-cached pages.

Figure 9(a) plots the average launch times of the applications under the SRA and
the PCPA schemes. As expected, the launch time under the proposed scheme was
effectively reduced by 9.2% on average. This result comes from the increased amount
of page-cached pages by the PCPA region as shown in Figure 9(b). In the figure, we can
see that 13.1MB difference in page-cached pages between before and after executing
each application under the SRA scheme. It means the SRA scheme needed to reclaim
the existing page-cached pages to create new free pages for anonymous pages or page-
cached pages, and it also affected the launch times of applications. In contrast, in our
proposed scheme, the change in amount of page-cached pages was only 540KB. This
is because many file accesses were hit in page-cached pages, so there was no need to
reclaim page-cached pages.

Figure 9(c) shows that 65% of average flash read and write I/Os are reduced due
to the increased page-cached pages. Thus the reduction of flash read and write I/O
improved the launch time.

Note that the launch-time difference of myfiles was not noticeably reduced, unlike
other non-SRA-dependent applications. This is because myfiles generates a small
number of file accesses when it launches. Instead, it creates many file accesses when
users open a directory or search for a file after launching the application. As shown in
Figure 9(c), myfiles recorded the smallest number of flash read and write I/Os among
the non-SRA-dependent applications in both schemes. As previously described, this
application is less I/O-intensive than others. Thus the increased size of page-cached
pages does not benefit myfiles, different from the others.

For further analysis of the launch time, we discuss how the Quick Reclaim addition-
ally incurred by our approach affects the launch time of non-SRA-dependent applica-
tions. In order to explain this, we first classify physical pages using the notations in
Section 3.1. Let Ptotal = Pnor ∪ P pcpa and pi ∈ Ptotal. Then, there exists three cases for
a page-cached page pi before the camera application is launching:

(1) pi ∈ Pnor;
(2) pi ∈ P pcpa, where pi is a dirty page or a page shared by other processes;
(3) pi ∈ P pcpa, where pi is a clean page-cached page.
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Fig. 9. Effects of the PCPA scheme when running real-life non-SRA-dependent Android applications:
(a) average launch time, (b) average page-cached pages before and after starting each application, and
(c) average flash read and write I/O size.
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Fig. 10. Average launch time of the camera application.

Consider a non-SRA-dependent application which uses pi as a page-cached page
after the camera application finishes its execution. In case of (1) and (2), pi is not
reclaimed so the file access is hit in the page-cached page. Thus the relaunch time
of the application is not delayed. To the contrary, in the case of (3), pi is reclaimed
by Quick Reclaim and the relaunch time of the application can deteriorate. Contrary
to intuition, our scheme outperforms the SRA scheme in average launch time of non-
SRA-dependent applications as shown in Figure 9(a). This can be explained as follows.
The size of Pnor is 10.53 times larger than that of P pcpa so the existence probability
of pi ∈ Pnor is much larger than that of pi ∈ P pcpa. In the case of (2), even if pi was
in P pcpa, it is excluded from the execution of Quick Reclaim. In the case of (3), pi is
evicted by Quick Reclaim and the PCPA region is quickly refilled with page-cached
pages of all applications after the camera application finishes. At this point in time,
the first relaunch of the application is delayed and pi resides in Pnor again. From the
second relaunch of the application, as the PCPA scheme has larger space to keep the
page-cached pages, the probability of pi ∈ Ptotal is higher than that of the SRA scheme.
Consequently, from the viewpoint of average launch time, case (3) does not damage the
launch time of non-SRA-dependent applications.

4.3.2. SRA-Dependent Applications. As an SRA-dependent application, we chose the cam-
era application. To reflect the realistic memory status of Android systems, we first ran
the monkeyrunner tool as in the non-SRA-dependent application tests. We then ran-
domly launched the camera application multiple times while the tool was running. We
measured the average launch time of the camera application under our target system
with four different configurations: (1) without any special memory region, (2) with the
SRA region, (3) with the CMA region, and (4) with the PCPA region. Figure 10 shows
the result of each configuration.

First, we configured the target system not to have any special memory region and
used it as a baseline to compare with other schemes. We can see that the average launch
time was 2.67 seconds in the figure, the second-worst result among the configurations.
Since there is no special memory region for the camera application, all the contiguous
page blocks required for launching the camera should be provided by the operating
system. In addition, as the randomly generated events made the memory status as
in the case of Figure 1(b), the number of 24- or 28-sized page blocks required for
ion buffer was small, as explained in Section 2.2. As a result, memory allocation time
for establishing ion buffer was increased and affected the launch time.

Under the SRA scheme, we can see in the figure that the launch time was improved
compared to the aforementioned first test configuration. Since the predefined SRA
region is always ready for launching the camera application in the SRA scheme, there
was no need to establish ion buffer. In the figure, we can see that it took 1.85 seconds
to launch, nevertheless it had no overhead in provisioning contiguous pages. This is be-
cause, as explained in Section 2.3, Android framework modules, that is, Surface Flinger
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Fig. 11. Trade-off and overhead analysis: (a) average execution time for Quick Reclaim and average mea-
sured N alloc when running an SRA-dependent application (i.e., camera) with varying the PCPA size;
(b) distribution of available pages in the PCPA after Quick Reclaim.

and Binder, also seek for contiguous memory space during the launching process. Ac-
cordingly, we can know that if Android systems are in a memory status as shown in
Figure 1(b), provision of contiguous pages for the Android framework modules can
affect the launch time of the camera application.

The CMA scheme resulted in the worst launch time compared to others. Under the
CMA scheme, any application can allocate anonymous pages as well as page-cached
pages in the CMA region. When the camera application launches, this region should
be cleared by reclaiming page-cached pages or migrating anonymous pages. When we
migrated 200MB-sized pages from the CMA region to the normal region, this alone
took 1.66 seconds in our target system. What was worse, write-back of dirty pages to
the eMMC incurred additional delay.

In spite of the overhead in memory reclamation and establishing ion buffer, the
PCPA scheme represented the best launch time. The first reason is that the PCPA
scheme keeps more page-cached pages than the SRA scheme. Thus many file accesses
of the camera application could be hit in the page-cached pages. Second, as the page
blocks requested by Surface Flinger and Binder can be allocated in the PCPA region,
the memory allocation latency induced by provisioning contiguous pages for Android
framework modules was reduced.

4.4. Trade-off and Overhead Analysis

In order to analyze the trade-off between the PCPA size and memory allocation latency,
we measured the execution time of Quick Reclaim while varying the PCPA size. At the
same time, we measured Nalloc according to the PCPA size to find the optimal point
which brings about the smallest number of calls for alloc pages(n). To clear the PCPA
region with Quick Reclaim, we ran the camera application. Figure 11(a) shows the
dependency between Nalloc and the size of the PCPA (in the x-axis) in our target system.
When the PCPA size is smaller than 180MB, Nalloc drastically increases. In the case
of PCPA larger than 340MB, Quick Reclaim execution time is over 700ms and, due to
the reduced size of the normal region, LMK [Kalkov et al. 2012] can be triggered more
often. Therefore we ruled out the cases when the PCPA size is smaller than 180MB or
larger than 340MB in this experiment.

As shown in the figure, Nalloc is minimized when the PCPA size is set to 260MB. When
we compare the PCPA sizes at points 200MB and 260MB, the Quick Reclaim execution
time at 200MB is faster than the case of 260MB by 140ms. However, we choose 260MB
as the optimal PCPA size (Nalloc is smaller by 200) by jointly considering the TLB
miss ratio and the memory allocation latency for overall system overhead. To min-
imize Quick Reclaim execution time while maintaining the smallest Nalloc, we used
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multithreaded page reclaiming as described in Algorithm 2. In addition, we excluded
dirty pages in scanning to eliminate the additional time for write-back. As a result, we
can achieve 520ms execution time in Quick Reclaim.

In addition to the execution time, we examined non-reclaimable pages after executing
Quick Reclaim. As the launch time can be varied according to the distribution of non-
reclaimable pages, we performed 20 runs in total. Figure 11(b) shows the memory state
of the PCPA after Quick Reclaim. The y-axis denotes the experiment ID and the x-axis
represents the page frame number (PFN) of the PCPA. The start- and end-points of
the x-axis correspond to P1 ∈ P pcpa (PFN = 258048) and PA ∈ P pcpa (PFN = 325119),
respectively. The dots in Figure 11(b) indicate the PFNs of non-reclaimable pages after
execution of Quick Reclaim. As an example, in the experiment ID #4, the memory space,
region (A), has contiguous free pages ranging from P1 (PFN 258048) to P26452 (PFN
284500), meaning around free 103MB-sized contiguous pages. Regions (B), (C), and (D)
also represent tens of megabytes, respectively. As shown in the figure, we can vastly
reduce the number of alloc pages(0) calls in constructing ion buffer while increasing
the number of calls for alloc pages(8) and alloc pages(4), that is, small N alloc.

5. RELATED WORK

Studies on provisioning of contiguous memory spaces have mainly focused on two
categories: developing a good memory allocation and a free-space management policy
and page migration based on exchanging the position of used and freed pages.

5.1. Allocation and Free-Space Management

Johnstone and Wilson [1998] insisted that well-designed allocators can reduce frag-
mentation and also showed that a segregated fit-policy-based good-fit policy performs
well in terms of memory fragmentation. Based on that work, Masmano et al. [2004]
proposed the TLSF (two-level segregated fit) memory allocator, which manages a large
group of segregated free blocks using a two-level array of free blocks, and gave a solu-
tion to the fragmentation problem in dynamic memory allocation. Ramakrishna et al.
[2008] proposed a smart dynamic memory allocator to provide effective utilization of
memory. Free-lists (linked list for freed pages) are subdivided into short-lived and
long-lived objects, and one side of the memory is allocated with long-lived objects while
the other side is filled with short-lived objects. Thus, one side for free-lists assigned
to short-lived objects can be used as the non-fragmented region. The hoard allocator,
[Berger et al. 2000] manages one global heap and per-processor heaps to bound blowup
to a constant factor, where blowup is an indicator of memory fragmentation. To elimi-
nate a large amount of time for defragmentation activities followed by the invocation of
malloc() and free(), a defrag-dodging approach was developed and benefited Web-based
applications [Inoue et al. 2009].

5.2. Page Migration

When the Linux kernel fails to get free contiguous pages, it moves the currently used
pages to the free region at higher physical address and increases the free region at lower
physical address if the flag for compaction, CONFIG COMPACTION, is set [Corbet
2010]. Therefore many consecutive free pages are found at lower physical address in
memory. Rental memory management [Jeong et al. 2013] also uses a special region as
the SRA scheme and this special region always tries to keep clean page-cached pages.
Whenever dirty page-cached pages are found, they are moved to the normal region.
By doing so, an empty memory chunk can be found after eviction of contents in that
special region. The advanced version of rental memory management, the eCache-based
scheme [Jeong et al. 2012], uses a special region, called eCache, for page-cached pages.
The least accessed file-mapped caches are moved to the eCache. Thus the probability
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of existence of write-back pages in the eCache is very low. Therefore, by evicting page-
cached pages in the eCache, an empty memory space can be given. Rental memory
management and the eCache-based scheme are good solutions for the system which
does not support IOMMU and better than the CMA-based scheme in clearing that
special region which should be used for allocating contiguous pages.

Our PCPA scheme, however, does not focus on clearing all the page-cached pages
in that special region as do eCache and the PCPA. Instead, the PCPA scheme is most
effective in the system which supports an IOMMU, thus, we focused on how to acquire
as many quickly freed contiguous pages as possible, even though they are not totally
consecutive.

6. CONCLUSION

With the increased size of multimedia contents, allocating a large amount of physically
contiguous memory becomes an important issue. To cope with such an issue, the SRA-
based and CMA-based schemes have been introduced, but neither supports efficient
memory usage and fast memory allocation time simultaneously. In addition, although
an IOMMU is supported, if the required contiguous memory space is large, embedded
system designers are reluctant to use an IOMMU due to its memory allocation latency
in operating the IOMMU.

In this article, we proposed a new physical memory management policy, named PCPA
scheme, which overcomes the inefficiency of the SRA scheme’s memory utilization
and late response time of the CMA-based scheme in securing a physically contiguous
memory region. Using a quick memory-reclaiming mechanism with a special region
named PCPA, we could rapidly allocate a number of contiguous memory blocks, thereby
overcoming the induced page management overhead in using the IOMMU. Our PCPA
scheme is almost equivalent to the SRA scheme when we compare the launch time
of an application which uses the SRA region in the SRA scheme. To point out the
inefficient memory usage induced by the SRA, we compared the PCPA scheme with the
SRA scheme using benchmarks and real-world Android applications. Our evaluation
showed that, compared to the SRA scheme, the average execution time of I/O-intensive
benchmarks was improved by 24.7% and the average launch time was reduced by
9.2% in sampled real-world Android applications with the aid of enhanced memory
utilization.
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